• H2O World 2014 Training
  • Introduction
  • 1. H2O World Training Sandbox
  • 2. H2O in Big Data Environments
  • 3. Hands-On Training
    • 3.1. H2O with the Web UI
    • 3.2. R with H2O
    • 3.3. Supervised Learning
      • 3.3.1. Generalized Linear Models
      • 3.3.2. Gradient Boosted Models
      • 3.3.3. Random Forests
      • 3.3.4. Regression
      • 3.3.5. Classification
      • 3.3.6. Deep Learning
    • 3.4. Unsupervised Learning
      • 3.4.1. KMeans Clustering
      • 3.4.2. Dimensionality Reduction
      • 3.4.3. Anomaly Detection
    • 3.5. Advanced Topics
      • 3.5.1. Multi-model Parameter Tuning
      • 3.5.2. Categorical Feature Engineering
      • 3.5.3. Other Useful Tools
    • 3.6. Practical Use Cases for Marketing
  • 4. Sparkling Water
  • 5. Python on H2O
  • 6. Demos
    • 6.1. Tableau
    • 6.2. Excel
    • 6.3. Streaming Data
  • 7. Build Applications on Top of H2O
    • 7.1. KMeans
    • 7.2. Grep
    • 7.3. Quantiles
    • 7.4. Build with Sparkling Water
  • 8. Troubleshooting
  • 9. More Information
Powered by GitBook

H2O World 2014 Training

More Information

  • H2O Documentation
  • H2O Booklets
  • H2O YouTube Channel
  • H2O SlideShare
  • H2O Blog
  • H2O GitHub