H2O World 2014 Training
Introduction
1.
H2O World Training Sandbox
2.
H2O in Big Data Environments
3.
Hands-On Training
3.1.
H2O with the Web UI
3.2.
R with H2O
3.3.
Supervised Learning
3.3.1.
Generalized Linear Models
3.3.2.
Gradient Boosted Models
3.3.3.
Random Forests
3.3.4.
Regression
3.3.5.
Classification
3.3.6.
Deep Learning
3.4.
Unsupervised Learning
3.4.1.
KMeans Clustering
3.4.2.
Dimensionality Reduction
3.4.3.
Anomaly Detection
3.5.
Advanced Topics
3.5.1.
Multi-model Parameter Tuning
3.5.2.
Categorical Feature Engineering
3.5.3.
Other Useful Tools
3.6.
Practical Use Cases for Marketing
4.
Sparkling Water
5.
Python on H2O
6.
Demos
6.1.
Tableau
6.2.
Excel
6.3.
Streaming Data
7.
Build Applications on Top of H2O
7.1.
KMeans
7.2.
Grep
7.3.
Quantiles
7.4.
Build with Sparkling Water
8.
Troubleshooting
9.
More Information
Powered by
GitBook
A
A
Serif
Sans
White
Sepia
Night
Share on Twitter
Share on Google
Share on Facebook
Share on Weibo
Share on Instapaper
H2O World 2014 Training
More Information
H2O Documentation
H2O Booklets
H2O YouTube Channel
H2O SlideShare
H2O Blog
H2O GitHub