• H2O World 2014 Training
  • Introduction
  • 1. H2O World Training Sandbox
  • 2. H2O in Big Data Environments
  • 3. Hands-On Training
    • 3.1. H2O with the Web UI
    • 3.2. R with H2O
    • 3.3. Supervised Learning
      • 3.3.1. Generalized Linear Models
      • 3.3.2. Gradient Boosted Models
      • 3.3.3. Random Forests
      • 3.3.4. Regression
      • 3.3.5. Classification
      • 3.3.6. Deep Learning
    • 3.4. Unsupervised Learning
      • 3.4.1. KMeans Clustering
      • 3.4.2. Dimensionality Reduction
      • 3.4.3. Anomaly Detection
    • 3.5. Advanced Topics
      • 3.5.1. Multi-model Parameter Tuning
      • 3.5.2. Categorical Feature Engineering
      • 3.5.3. Other Useful Tools
    • 3.6. Practical Use Cases for Marketing
  • 4. Sparkling Water
  • 5. Python on H2O
  • 6. Demos
    • 6.1. Tableau
    • 6.2. Excel
    • 6.3. Streaming Data
  • 7. Build Applications on Top of H2O
    • 7.1. KMeans
    • 7.2. Grep
    • 7.3. Quantiles
    • 7.4. Build with Sparkling Water
  • 8. Troubleshooting
  • 9. More Information
Powered by GitBook

H2O World 2014 Training

Hands-On Training

In the following sections, you'll learn how to get started with H2O via the simple to use Web UI, R, and go through a number of specific examples.

3.1 H2O with Web UI

  • Amy Wang: Step-by-step Tutorial (Video Tutorial)

3.2 H2O in R

  • Patrick Aboyoun: Basics and Exploratory Data Analysis (EDA)

3.3 Supervised Learning - Regression and Classification

  • Patrick Aboyoun: Introduction to Generalized Linear Models in H2O
  • Patrick Aboyoun: Introduction to Gradient Boosting Machines in H2O
  • Patrick Aboyoun: Introduction to Random Forests in H2O
  • Patrick Aboyoun: Regression
  • Patrick Aboyoun: Classification
  • Arno Candel: Deep Learning

3.4 Unsupervised Learning

  • Arno Candel & Spencer Aiello: K-Means Clustering
  • Arno Candel: Dimensionality Reduction on MNIST
  • Arno Candel: Anomaly Detection on MNIST with H2O Deep Learning

3.5 Advanced Topics

  • Arno Candel: Multi-model Parameter Tuning for Higgs Dataset
  • Arno Candel: Categorical Feature Engineering for Adult dataset
  • Arno Candel: Other Useful Tools

3.6 Yan: Marketing Algorithms and Use-Cases

  • Yan Zou: H2O for Marketing/CRM Applications - Presentation
  • Yan Zou: H2O for Marketing/CRM Applications - R Script
  • Vinod Iyengar: Lead Scoring For Real Time Bidding - Presentation