
Hands-on: Sparkl ing Water

Michal
Malohlava

Can I call H2O’s
algorithms from

my Spark
workflow?

Open-source distributed execution platform

User-friendly API for data transformation based on DataFrames

Platform components - SQL, MLLib, NLP 

Multitenancy

Large and active community

Spark

Can I call H2O’s
algorithms from

my Spark
workflow?

YES,
You can!

Sparkl ing Water

Provides
Transparent integration of H2O with Spark ecosystem
Transparent use of H2O data structures and algorithms with
Spark API
Platform for building Smarter Applications

Excels in existing Spark workflows requiring advanced
Machine Learning algorithms	

Sparkl ing Water cluster of size 3 on YARN

Hadoop + HDFS

YARN node manager

worker

worker

YARN container

Spark executor

Scala/Py main program

YARN node manager

worker

worker

YARN container

Spark executor

YARN node manager

worker

worker

YARN container

Spark executor

driver

driver

Driver

Sparkl ing Water Application Lifecycle

spark-submit
Spark
Master
JVM

Spark
Worker

JVM

Spark
Worker

JVM

Spark
Worker

JVM

Sparkling Water Cluster

 Spark
Executor
 JVM

H2O

 Spark
Executor
 JVM

H2O

 Spark
Executor
 JVM

H2O

Sparkling
App

implements

?

Contains application
and Sparkling Water
classes

Data Sharing

H2O

H2O

H2O

Sparkling Water Cluster

Spark Executor JVM
Data

Source
(e.g.
HDFS)

Spark
RDD

RDDs and DataFrames
share same memory

space

H2O
Frame

Spark Executor JVM

Spark Executor JVM

Lets play
with it!

OR

Detect spam text messages

Data sample

ML Workf low

1. Extract data
2. Transform, tokenize messages
3. Build Tf-IDF model
4. Create and evaluate  

Deep Learning model
5. Use the model to detect  

spam

Goal: For a given text
message identify if it is

spam or not

Application environment

sparkling-shell

Lego #1: Data load

// Data load 
def load(dataFile: String): RDD[Array[String]] = { 
 sc.textFile(dataFile).map(l => l.split(“\t"))
 .filter(r => !r(0).isEmpty) 
}

Lego #2: Ad-hoc Tokenization

def tokenize(data: RDD[String]): RDD[Seq[String]] = { 
 val ignoredWords = Seq("the", “a", …)  
 val ignoredChars = Seq(',', ‘:’, …)  
 
 val texts = data.map(r => { 
 var smsText = r.toLowerCase 
 for(c <- ignoredChars) { 
 smsText = smsText.replace(c, ' ')  
 } 
 
 val words =smsText.split(" ").filter(w =>
 !ignoredWords.contains(w) && w.length>2).distinct 
 words.toSeq 
 }) 
 texts 
}

Lego #3: Tf - IDF

def buildIDFModel(tokens: RDD[Seq[String]],  
 minDocFreq:Int = 4,  
 hashSpaceSize:Int = 1 << 10):
 (HashingTF, IDFModel, RDD[Vector]) = { 
 // Hash strings into the given space 
 val hashingTF = new HashingTF(hashSpaceSize) 
 val tf = hashingTF.transform(tokens) 

 // Build term frequency-inverse document frequency 
 val idfModel = new IDF(minDocFreq=minDocFreq).fit(tf) 
 val expandedText = idfModel.transform(tf) 
 (hashingTF, idfModel, expandedText) 
}

Hash words  
into large  
space

Term freq scale

“Thank for the order…” […, 0, 3.5, 0, 1, 0, 0.3, 0, 1.3, 0, 0,…]
Thank Order

Lego #4: Build a model

def buildDLModel(train: Frame, valid: Frame, epochs: Int = 10,  
 l1: Double = 0.001, l2: Double = 0.0,  
 hidden: Array[Int] = Array[Int](200, 200)) 
 (implicit h2oContext: H2OContext): DeepLearningModel = { 
 import h2oContext._ 
 // Build a model 
 val dlParams = new DeepLearningParameters() 
 dlParams._destination_key = Key.make("dlModel.hex")  
 dlParams._train = train 
 dlParams._valid = valid 
 dlParams._response_column = 'target 
 dlParams._epochs = epochs 
 dlParams._l1 = l1 
 dlParams._hidden = hidden 
 
 // Create a job 
 val dl = new DeepLearning(dlParams) 
 val dlModel = dl.trainModel.get 
 
 // Compute metrics on both datasets 
 dlModel.score(train).delete() 
 dlModel.score(valid).delete() 
 
 dlModel 
}

Deep Learning: Create multi-layer
feed forward neural networks starting
with an input layer followed by
multiple layers of nonlinear
transformations

Assembly f inal workf low

// Data load 
val data = load(DATAFILE) 
// Extract response spam or ham 
val hamSpam = data.map(r => r(0))  
val message = data.map(r => r(1))  
// Tokenize message content 
val tokens = tokenize(message) 
 
// Build IDF model 
var (hashingTF, idfModel, tfidf) = buildIDFModel(tokens) 
 
// Merge response with extracted vectors 
val resultDF = hamSpam.zip(tfidf).map(v => SMS(v._1, v._2)) 
val tableHF:H2OFrame = resultDF 
 
// Split table 
val keys = Array[String]("train.hex", "valid.hex")  
val ratios = Array[Double](0.8)  
val frs = split(table, keys, ratios) 
val (train, valid) = (frs(0), frs(1)) 
table.delete() 
 
// Build a model 
val dlModel = buildDLModel(train, valid)

H2O split dataset

Build
H2O model

Data munging
in Spark

H2O Flow: Data exploration

H2O Flow: Model evaluation

val trainMetrics = binomialMM(dlModel, train) 
val validMetrics = binomialMM(dlModel, valid)

Collect model  
metrics

Spam predictor

def isSpam(msg: String,  
 dlModel: DeepLearningModel,  
 hashingTF: HashingTF,  
 idfModel: IDFModel,  
 hamThreshold: Double = 0.5):Boolean = { 
 val msgRdd = sc.parallelize(Seq(msg)) 
 val msgVector: SchemaRDD = idfModel.transform( 
 hashingTF.transform ( 
 tokenize (msgRdd)))
 .map(v => SMS("?", v)) 
 val msgTable: DataFrame = msgVector 
 msgTable.remove(0) // remove first column 
 val prediction = dlModel.score(msgTable) 

 prediction.vecs()(1).at(0) < hamThreshold 
}

Prepared
models

Default decision
threshold

Model
scoring

Predict spam

isSpam("Michal, H2OWorld
party tomorrow in MV?")

isSpam("We tried to contact
you re your reply
to our offer of a Video
Handset? 750
anytime any networks mins?
UNLIMITED TEXT?")

Learn more at h2o.ai
Follow us at @h2oai

Thank you!
Sparkling Water is

open-source  
ML application platform

combining  
power of Spark and H2O

